Markscheme

May 2016

Chemistry

Standard level

Paper 2

This markscheme is confidential and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Subject Details: Chemistry SL Paper 2 Markscheme

Mark Allocation

Candidates are required to answer ALL questions. Maximum total = [50 marks].

1. Each row in the "Question" column relates to the smallest subpart of the question.
2. The maximum mark for each question subpart is indicated in the "Total" column.
3. Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
4. A question subpart may have more marking points than the total allows. This will be indicated by "max" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
5. An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
6. An alternative answer is indicated in the "Answers" column by "OR". Either answer can be accepted.
7. An alternative markscheme is indicated in the "Answers" column under heading ALTERNATIVE 1 etc. Either alternative can be accepted.
8. Words inside chevrons «" in the "Answers" column are not necessary to gain the mark.
9. Words that are underlined are essential for the mark.
10. The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by OWTTE (or words to that effect) in the "Notes" column.
12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then follow through marks should be awarded. When marking, indicate this by adding ECF (error carried forward) on the script.
14. Do not penalize candidates for errors in units or significant figures, unless it is specifically referred to in the "Notes" column.
15. If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
16. If a question asks for an equation for a reaction, a balanced symbol equation is usually expected. Do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

Question			Answers	Notes	Total
1.	a	i		Accept structures using dots and/or crosses to indicate bonds and/or lone pair.	1
1.	a	ii	non-polar AND P and H have the same electronegativity \checkmark	Accept "similar electronegativities". Accept "polar" if there is a reference to a small difference in electronegativity and apply ECF in 1 a (iv).	1
1.	a	iii	4 electron domains/pairs/negative charge centres «around the central atom" OR a lone/non-bonding pair «and three bonding pairs around the central atom» \checkmark repulsion between electron domains/pairs/negative charge centres «produces non-planar shape» OR «repulsion causes» tetrahedral orientation/pyramidal shape \checkmark		2
1.	a	iv	PH_{3} has London «dispersion» forces \checkmark NH_{3} forms H -bonds \checkmark H-bonds are stronger OR London forces are weaker \checkmark	Accept van der Waals' forces, dispersion forces and instantaneous dipole - induced dipole forces. Accept "dipole-dipole forces" as molecule is polar. H-bonds in NH_{3} (only) must be mentioned to score [2]. Do not award M2 or M3 if: - implies covalent bond is the H -bond - implies covalent bonds break. Accept "dipole-dipole forces are weaker".	2 max

Question			Answers	Notes	Total
1.	b	i	Element Allotropes carbon/C \checkmark Award [1] for two of: diamond graphite graphene OR $\mathrm{C}_{60} /$ buckminsterfullerene \checkmark oxygen $/ \mathrm{O} / \mathrm{O}_{2} \checkmark$ ozone $/ \mathrm{O}_{3}$ AND «diatomic/molecular» oxygen $/ \mathrm{O}_{2} \checkmark$	Accept two correctly named allotropes of any other named element (S, Se, Sn, As, etc.). Accept fullerene, "buckyballs" etc. instead of buckminsterfullerene.	2
1.	b	ii	P_{4} is a molecule «comprising 4P atoms» AND 4P is four/separate «P» atoms OR P_{4} represents «4P» atoms bonded together AND 4P represents «4» separate/non-bonded «P» atoms \checkmark	Accept "4 P is 4 mol of P " for 'AND' statements.	1
1.	b	iii	can act as both a «Brønsted-Lowry» acid and a «Brønsted-Lowry» base OR can accept and/or donate a hydrogen ion/proton/ $\mathrm{H}^{+} \checkmark$ $\mathrm{HPO}_{2}^{2-} \text { AND } \mathrm{H}_{3} \mathrm{PO}_{2} \checkmark$	Accept "reacts with both acids and bases".	2
1.	b	iv	$\begin{array}{lll} \hline P_{4}: & 0 & \checkmark \\ \mathrm{H}_{2} \mathrm{PO}_{2}^{-}: & +1 & \checkmark \end{array}$	Accept Roman numerals notations. Do not accept 1 or $1+$ for $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$.	2
1.	b	v	oxygen gained, so could be oxidation \checkmark hydrogen gained, so could be reduction OR negative charge «on product/ $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$»/gain of electrons so could be reduction \checkmark oxidation number increases so must be oxidation	Award [1 max] for M1 and M2 if candidate displays knowledge of at least two of these definitions but does not apply them to the reaction. Do not award M3 for "oxidation number changes".	3

Question			Answers	Notes	Total
1.	c	i	« $\left\langle\frac{2.478}{4 \times 30.97}\right\rangle$＂$=0.02000$ «mol» \downarrow	Accept answers using $A_{r}(P)=31$ ．	1
1.	c	ii	$n(\mathrm{NaOH})=« 0.1000 \times 5.00=» 0.500$ «mol» AND $\mathrm{P}_{4} /$ phosphorus is limiting reagent	Accept $n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{100}{18}=5.50$ AND P_{4} is limiting reagent．	1
1.	c	iii	amount in excess «＝ $0.500-(3 \times 0.02000)$ 》 $=0.440$ «mol» \downarrow		1
1.	c	iv	«22．7 $\times 1000 \times 0.02000 》=454$ «cm ${ }^{3} 》 \checkmark$	Accept «22．4 $\times 1000 \times 0.02000=» 448$ «cm³»． Accept methods employing $p V=n R T$ ，with p as either $100\left(454 \mathrm{~cm}^{3}\right)$ or $101.3 \mathrm{kPa}\left(448 \mathrm{~cm}^{3}\right)$ ． Do not accept answers in dm^{3} ．	1

Question			Answers	Notes	Total
2.	a	i	temperature rise «= $\frac{750 \times 1.00}{0.2000 \times 1.00} »=3750 «^{\circ} \mathrm{C} / \mathrm{K} » \downarrow$	Do not accept -3750.	1
2.	a	ii	$\begin{aligned} & n(\mathrm{P}) «=\frac{43.6}{30.97} »=1.41 \text { «mol»} \downarrow \\ & n(\mathrm{O}) «=\frac{100-43.6}{16.00} »=3.53 \text { «mol» } \downarrow \\ & « \frac{n(\mathrm{O})}{n(\mathrm{P})}=\frac{3.53}{1.41}=2.50 \text { so empirical formula is» } \mathrm{P}_{2} \mathrm{O}_{5} \downarrow \end{aligned}$	Accept other methods where the working is shown. Accept answer using $\operatorname{Ar}(P)=31$ (which gives the same ratios).	3
2.	a	iii	$« \frac{285}{141.9}=2.00 \text {, so molecular formula }=2 \times \mathrm{P}_{2} \mathrm{O}_{5}=» \mathrm{P}_{4} \mathrm{O}_{10} \downarrow$	Accept "process" of dividing 285 by empirical mass (answer to a (ii)) even if final formula not possible.	1
2.	b	i	$\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq}) \checkmark$	Accept $\mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 4 \mathrm{HPO}_{3}(\mathrm{aq})$ (initial reaction) Accept $\mathrm{P}_{2} \mathrm{O}_{5}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ Accept equations for $\mathrm{P}_{4} \mathrm{O}_{6} / \mathrm{P}_{2} \mathrm{O}_{3}$ if given in a (iii). Accept any ionized form of the acids as the products. Accept equilibrium sign in equation.	1
2.	b	ii	pH: decreases AND electrical conductivity: increases. \checkmark		1
2.	b	iii	phosphorus not commonly found in fuels OR no common pathways for phosphorus oxides to enter the air OR amount of phosphorus-containing organic matter undergoing anaerobic decomposition is small	Accept "phosphorus oxides are solids so are not easily distributed in the atmosphere". Accept "low levels of phosphorus oxide in the air". Do not accept " $\mathrm{H}_{3} \mathrm{PO}_{4}$ is a weak acid".	1
2.	b	iv	Pre-combustion: remove sulfur/S/sulfur containing compounds \checkmark Post-combustion: remove $\mathrm{it} / \mathrm{SO}_{2}$ by neutralization/reaction with alkali/base	Accept "lime injection fluidised bed combustion" for either, but not both.	2

Question			Answers	Notes	Total
3.	a	i	«K $\mathrm{c}_{\mathrm{c}}=» \frac{\left[\mathrm{COCl}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{Cl}_{2}\right]} \checkmark$		1
3.	a	ii	no effect \checkmark		1
3.	b	i	products lower than reactants AND enthalpy of reaction correctly marked and labelled with name or value activation energy correctly marked and labelled with name or value	Accept other clear ways of indicating energy/ enthalpy changes. Reactant/product lines do not need to be labelled.	2
3.	b	ii	lower dotted curve, between same reactants and product levels, labelled "Catalysed" \checkmark	Accept curve that is not labelled if it can be differentiated from the initial curve.	1

Question			Answers	Notes	Total
3.	b	iii		Accept curve that is not labelled. Do not penalize if curve doesn't appear to go through origin or crosses x-axis.	1
3.	b	iv	greater proportion of molecules have $E \geq E_{a}$ or $E>E_{a}$ OR greater area under curve to the right of the $E_{a} \checkmark$ greater frequency of collisions «between molecules» OR more collisions per unit time/second \checkmark	Accept more molecules have energy greater than E_{a}. Do not accept just particles have greater kinetic energy. Accept "chance/probability/likelihood" instead of "frequency". Do not accept just "more collisions".	2

Question			Answers	Notes	Total
4.	a	i	methylpropene \checkmark	Accept 2-methylpropene/2-methylprop-1-ene/2-methyl-1-propene. Do not accept 2-methylprop-2-ene/2-methyl-2-propene.	1
4.	a	ii	$-\mathrm{CH}_{2}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{2}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{CH}_{2}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}-\checkmark$	Must have continuation bonds at both ends. Accept any orientation of the monomers, which could give methyl side-chains on neighbouring atoms etc.	1
4.	a	iii	$\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark$		1
4.	b	i	«structural/functional group» isomer«s» \downarrow		1
4.	b	ii	Test: «react with» bromine $/ \mathrm{Br}_{2}$ «in the dark» OR «react with» bromine water $/ \mathrm{Br}_{2}(\mathrm{aq})$ «in the dark» A: from yellow/orange/brown to colourless AND B: colour remains/slowly decolourized	Accept other correct reagents, such as manganate(VII) or iodine solutions, and descriptions of the corresponding changes observed. Accept "decolourized" for A and "not decolourized/unchanged" for B. Do not accept "clear/transparent" instead of "colourless".	2
4.	b	iii	IR: A would absorb at $1620-1680 \mathrm{~cm}^{-1}$ AND B would not \checkmark ${ }^{1} H$ NMR: A would have 2 signals $\mathbf{A N D}$ B would have 1 signal OR A would have a signal at $4.5-6.0 \mathrm{ppm}$ AND B would not OR A would have a signal at $0.9-1.0 \mathrm{ppm}$ AND B would not OR B would have a signal at 1.3-1.4 ppm AND A would not \checkmark	Accept "peak" for "signal". Award [1 max] if students have a correct assignation of a signal, but no comparison, for both IR and NMR. Accept " B would have a signal at 2.0 ppm" as shown in its ${ }^{1} \mathrm{H}$ NMR spectrum.	2

