

Markscheme

May 2016

Chemistry

Standard level

Paper 2

12 pages

This markscheme is **confidential** and for the exclusive use of examiners in this examination session.

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

Subject Details: Chemistry SL Paper 2 Markscheme

Mark Allocation

Candidates are required to answer ALL questions. Maximum total = [50 marks].

- 1. Each row in the "Question" column relates to the smallest subpart of the question.
- 2. The maximum mark for each question subpart is indicated in the "Total" column.
- 3. Each marking point in the "Answers" column is shown by means of a tick (\checkmark) at the end of the marking point.
- 4. A question subpart may have more marking points than the total allows. This will be indicated by "**max**" written after the mark in the "Total" column. The related rubric, if necessary, will be outlined in the "Notes" column.
- 5. An alternative word is indicated in the "Answers" column by a slash (/). Either word can be accepted.
- 6. An alternative answer is indicated in the "Answers" column by "**OR**". Either answer can be accepted.
- 7. An alternative markscheme is indicated in the "Answers" column under heading **ALTERNATIVE 1** etc. Either alternative can be accepted.
- 8. Words inside chevrons « » in the "Answers" column are not necessary to gain the mark.
- 9. Words that are <u>underlined</u> are essential for the mark.
- 10. The order of marking points does not have to be as in the "Answers" column, unless stated otherwise in the "Notes" column.
- 11. If the candidate's answer has the same "meaning" or can be clearly interpreted as being of equivalent significance, detail and validity as that in the "Answers" column then award the mark. Where this point is considered to be particularly relevant in a question it is emphasized by **OWTTE** (or words to that effect) in the "Notes" column.
- 12. Remember that many candidates are writing in a second language. Effective communication is more important than grammatical accuracy.
- 13. Occasionally, a part of a question may require an answer that is required for subsequent marking points. If an error is made in the first marking point then it should be penalized. However, if the incorrect answer is used correctly in subsequent marking points then **follow through** marks should be awarded. When marking, indicate this by adding **ECF** (error carried forward) on the script.

- 14. Do **not** penalize candidates for errors in units or significant figures, **unless** it is specifically referred to in the "Notes" column.
- 15. If a question specifically asks for the name of a substance, do not award a mark for a correct formula unless directed otherwise in the "Notes" column. Similarly, if the formula is specifically asked for, do not award a mark for a correct name unless directed otherwise in the "Notes" column.
- 16. If a question asks for an equation for a reaction, a balanced symbol equation is usually expected. Do not award a mark for a word equation or an unbalanced equation unless directed otherwise in the "Notes" column.
- 17. Ignore missing or incorrect state symbols in an equation unless directed otherwise in the "Notes" column.

C	Questi	ion	Answers	Notes	Total
1.	а	i	HPH H ✓	Accept structures using dots and/or crosses to indicate bonds and/or lone pair.	1
1.	а	ii	non-polar AND P and H have the same electronegativity ✓	Accept "similar electronegativities". Accept "polar" if there is a reference to a small difference in electronegativity and apply ECF in 1 a (iv).	1
1.	а	111	 4 electron domains/pairs/negative charge centres «around the central atom» OR a lone/non-bonding pair «and three bonding pairs around the central atom» ✓ repulsion between electron domains/pairs/negative charge centres «produces non-planar shape» OR «repulsion causes» tetrahedral orientation/pyramidal shape ✓ 		2
1.	a	iv	 PH₃ has London «dispersion» forces ✓ NH₃ forms H-bonds ✓ H-bonds are stronger OR London forces are weaker ✓ 	 Accept van der Waals' forces, dispersion forces and instantaneous dipole – induced dipole forces. Accept "dipole-dipole forces" as molecule is polar. H-bonds in NH₃ (only) must be mentioned to score [2]. Do not award M2 or M3 if: implies covalent bond is the H-bond implies covalent bonds break. Accept "dipole-dipole forces are weaker". 	2 max

(continued)

C	Questi	ion	Answers	Notes	Total
1.	b	İ	Element Allotropes carbon/C ✓ Award [1] for two of: diamond graphite graphene C ₆₀ / buckminsterfullerene ✓ OR ozone/O ₃ AND «diatomic/molecular» oxygen/O ₂ ✓	Accept two correctly named allotropes of any other named element (S, Se, Sn, As, etc.). Accept fullerene, "buckyballs" etc. instead of buckminsterfullerene.	2
1.	b	ii	P ₄ is a molecule «comprising 4P atoms» AND 4P is four/separate «P» atoms OR P ₄ represents «4P» atoms bonded together AND 4P represents «4» separate/non-bonded «P» atoms ✓	Accept "4 P is 4 mol of P" for ' AND ' statements.	1
1.	b	iii	can act as both a «Brønsted–Lowry» acid and a «Brønsted–Lowry» base OR can accept and/or donate a hydrogen ion/proton/H ⁺ \checkmark HPO ₂ ²⁻ AND H ₃ PO ₂ \checkmark	Accept "reacts with both acids and bases".	2
1.	b	iv	$\begin{array}{cccc} P_4: & 0 & \checkmark \\ H_2 P O_2^-: & +1 & \checkmark \end{array}$	Accept Roman numerals notations. Do not accept 1 or $1+$ for $H_2PO_2^-$.	2
1.	b	V	 oxygen gained, so could be oxidation ✓ hydrogen gained, so could be reduction OR negative charge «on product/H₂PO₂⁻» /gain of electrons so could be reduction ✓ oxidation number increases so must be oxidation ✓ 	Award [1 max] for M1 and M2 if candidate displays knowledge of at least two of these definitions but does not apply them to the reaction. Do not award M3 for "oxidation number changes".	3

C	Question		Answers	Notes	Total
1.	С	i	$\left(\left(\frac{2.478}{4 \times 30.97} \right) \right) = 0.02000 \text{ (mol)} \checkmark $	Accept answers using $A_r(P) = 31$.	1
1.	C	ii	n (NaOH) = «0.1000 × 5.00 =» 0.500 «mol» AND P ₄ /phosphorus is limiting reagent \checkmark	Accept $n(H_2O) = \frac{100}{18} = 5.50$ AND P_4 is limiting reagent.	1
1.	С	iii	amount in excess «= 0.500 − (3 × 0.02000)» = 0.440 «mol» ✓		1
1.	C	iv	«22.7 × 1000 × 0.02000» = 454 «cm ³ » ✓	Accept «22.4 × 1000 × 0.02000 =» 448 «cm ³ ». Accept methods employing $pV = nRT$, with p as either 100 (454 cm ³) or 101.3 kPa (448 cm ³). Do not accept answers in dm ³ .	1

0	Questi	ion	Answers	Notes	Total
2.	а	i	temperature rise $ = \frac{750 \times 1.00}{0.2000 \times 1.00} $ = 3750 «°C/K» $ \checkmark $	Do not accept –3750.	1
2.	а	ii	$n(P) \ll = \frac{43.6}{30.97} \gg = 1.41 \pmod{\$} \checkmark$ $n(O) \ll = \frac{100 - 43.6}{16.00} \gg = 3.53 \pmod{\$} \checkmark$ $\ll \frac{n(O)}{n(P)} = \frac{3.53}{1.41} = 2.50 \text{ so empirical formula is} P_2O_5 \checkmark$	Accept other methods where the working is shown. Accept answer using $Ar(P) = 31$ (which gives the same ratios).	3
2.	а	iii		Accept "process" of dividing 285 by empirical mass (answer to a (ii)) even if final formula not possible.	1
2.	b	i	$P_4O_{10}(s) + 6H_2O(l) \rightarrow 4H_3PO_4(aq) \checkmark$	Accept $P_4O_{10}(s) + 2H_2O(l) \rightarrow 4HPO_3(aq)$ (initial reaction)Accept $P_2O_5(s) + 3H_2O(l) \rightarrow 2H_3PO_4(aq)$ Accept equations for P_4O_6/P_2O_3 if given in a (iii).Accept any ionized form of the acids as the products. Accept equilibrium sign in equation.	1
2.	b	ii	<i>pH:</i> decreases AND electrical conductivity: increases. ✓		1
2.	b	111	 phosphorus not commonly found in fuels OR no common pathways for phosphorus oxides to enter the air OR amount of phosphorus-containing organic matter undergoing anaerobic decomposition is small ✓ 	Accept "phosphorus oxides are solids so are not easily distributed in the atmosphere". Accept "low levels of phosphorus oxide in the air". Do not accept " H_3PO_4 is a weak acid".	1
2.	b	iv	Pre-combustion: remove sulfur/S/sulfur containing compounds ✓ Post-combustion: remove it/SO₂ by neutralization/reaction with alkali/base ✓	Accept "lime injection fluidised bed combustion" for either, but not both.	2

C	Questi	on	Answers	Notes	Total
3.	а	i	$\ll \mathcal{K}_{c} = \gg \frac{[COCl_{2}]}{[CO][Cl_{2}]} \checkmark$		1
3.	а	ii	no effect 🗸		1
3.	b	i	$\frac{B_{eactants}}{E_{reactants}}$ $\frac{B_{eactants}}{E_{reactants}}$ $\frac{E_{nthalpy of}}{P_{reaction / \Delta H}}$ $\frac{B_{eactants}}{P_{reaction / \Delta H}}$ $\frac{B_{eactants}}{P_{reactants}}$ $\frac{B_{eactants}}{P_{reactants}}$ $\frac{B_{eactants}}{P_{reactants}}$ $\frac{B_{eactants}}{P_{reactants}}$ $\frac{B_{eactants}}{P_{reactants}}}$ $\frac{B_{eactants}}{P_{reactants}}$	Accept other clear ways of indicating energy/ enthalpy changes. Reactant/product lines do not need to be labelled.	2
3.	b	ii	Reactants Catalysed Product Progress of reaction Iower dotted curve, between same reactants and product levels, labelled "Catalysed" ✓	Accept curve that is not labelled if it can be differentiated from the initial curve.	1

0	Questi	on	Answers	Notes	Total
3.	b	iii	second curve at a higher temperature is correctly drawn (maximum lower and to right of original) \checkmark	Accept curve that is not labelled. Do not penalize if curve doesn't appear to go through origin or crosses x-axis.	1
3.	b	iv	greater proportion of molecules have $E \ge E_a$ or $E > E_a$ <i>OR</i> greater area under curve to the right of the $E_a \checkmark$ greater frequency of collisions «between molecules» <i>OR</i> more collisions per unit time/second \checkmark	Accept more molecules have energy greater than E_a . Do not accept just particles have greater kinetic energy. Accept "chance/probability/likelihood" instead of "frequency". Do not accept just "more collisions".	2

(continued)

C	Quest	ion	Answers	Notes	Total
4.	а	i	methylpropene 🗸	Accept 2-methylpropene/2-methylprop-1- ene/2-methyl-1-propene. Do not accept 2-methylprop-2-ene/2- methyl-2-propene.	1
4.	а	ii	$-CH_2-C(CH_3)_2-CH_2-C(CH_3)_2-CH_2-C(CH_3)_2-\checkmark$	Must have continuation bonds at both ends. Accept any orientation of the monomers, which could give methyl side-chains on neighbouring atoms etc.	1
4.	а	iii	$C_4H_8(g) + 6O_2(g) \rightarrow 4CO_2(g) + 4H_2O(l)$		1
4.	b	i	«structural/functional group» isomer«s» ✓		1
4.	b	ii	 <i>Test:</i> «react with» bromine/Br₂ «in the dark» <i>OR</i> «react with» bromine water/Br₂(aq) «in the dark» ✓ <i>A</i>: from yellow/orange/brown to colourless <i>AND B</i>: colour remains/slowly decolourized ✓ 	Accept other correct reagents, such as manganate(VII) or iodine solutions, and descriptions of the corresponding changes observed.Accept "decolourized" for A and "not decolourized/unchanged" for B. Do not accept "clear/transparent" instead of "colourless".	2
4.	b	iii	 IR: A would absorb at 1620–1680 cm⁻¹ AND B would not ✓ ¹H NMR: A would have 2 signals AND B would have 1 signal OR A would have a signal at 4.5–6.0 ppm AND B would not OR A would have a signal at 0.9–1.0 ppm AND B would not OR B would have a signal at 1.3–1.4 ppm AND A would not ✓ 	Accept "peak" for "signal". Award [1 max] if students have a correct assignation of a signal, but no comparison, for both IR and NMR. Accept "B would have a signal at 2.0 ppm" as shown in its ¹ H NMR spectrum.	2

(Questi	ion	Answers	Notes	Total
4.	C	i	<pre>«molecular ion» peak at «m/z =» 57 , «not 56» OR «molecular ion» peak at one «m/z» higher OR will not have a «large» peak at 56 ✓</pre>	Accept a peak at m/z one greater than the ¹² C one for any likely fragment.	1
4.	С	ii	protons: 6 AND neutrons: 7 \checkmark $1 \downarrow 1_{1s} 2_{s} 1_{2p} 1_{2p} \checkmark$	Accept full arrows.	2
4.	d		1s: AND 2p:	Accept p orbitals aligned on <i>y</i> – and <i>z</i> –axes, or diagrams correctly showing all three p-orbitals. Do not accept p-orbitals without a node.	1